The Phase Transition in Site Percolation on Pseudo-Random Graphs

نویسنده

  • Michael Krivelevich
چکیده

We establish the existence of the phase transition in site percolation on pseudo-random dregular graphs. Let G = (V,E) be an (n, d, λ)-graph, that is, a d-regular graph on n vertices in which all eigenvalues of the adjacency matrix, but the first one, are at most λ in their absolute values. Form a random subset R of V by putting every vertex v ∈ V into R independently with probability p. Then for any small enough constant > 0, if p = 1− d , then with high probability all connected components of the subgraph of G induced by R are of size at most logarithmic in n, while for p = 1+ d , if the eigenvalue ratio λ/d is small enough as a function of , then typically R contains a connected component of size at least n d and a path of length proportional to n d .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging percolation and classical random graphs : Phase transition in dimension 1

We study a random graph model which combines properties of the edge percolation model on Z d and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called " rank 1 case " of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe completely the phase diag...

متن کامل

Merging percolation on Z and classical random graphs: Phase transition

We study a random graph model which is a superposition of the bond percolation model on Zd with probability p of an edge, and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called ”rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describ...

متن کامل

Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility

Inspired by empirical studies researchers have tried to model various systems like human populations, the World Wide Web or electric power grids by random graphs. Here we first examine different properties of random graphs(both undirected and directed) having arbitrary degree distributions using the generating functon formalism. We present some empirical data about the structure of random graph...

متن کامل

Merging percolation on Zd and classical random graphs: Phase transition

We study a random graph model which is a superposition of bond percolation on Zd with parameter p, and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called “rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe the phase diagram on ...

متن کامل

Random subgraphs of finite graphs: II. The lace expansion and the triangle condition

In a previous paper, we defined a version of the percolation triangle condition that is suitable for the analysis of bond percolation on a finite connected transitive graph, and showed that this triangle condition implies that the percolation phase transition has many features in common with the phase transition on the complete graph. In this paper, we use a new and simplified approach to the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016